
1

MUSCLE User Guide

Multiple sequence comparison by log-expectation
by Robert C. Edgar

Version 3.52
November 2004

http://www.drive5.com/muscle
email: muscle (at) drive5.com

MUSCLE is updated regularly. Send me an e-mail if you would like to be notified of new releases.

Citation:

Edgar, Robert C. (2004), MUSCLE: multiple sequence alignment with high accuracy and high
throughput, Nucleic Acids Research 32(5), 1792-97.

For a complete description of the algorithm, see also:

Edgar, Robert C (2004), MUSCLE: a multiple sequence alignment method with reduced time and
space complexity. BMC Bioinformatics, 5(1):113.

2

Table of Contents
1 Introduction ... 3
2 Quick Start... 3

2.1 Installation .. 3
2.2 Making an alignment .. 3
2.3 Large alignments .. 3
2.4 Faster speed .. 4
2.5 Huge alignments ... 4
2.6 Accuracy: caveat emptor .. 4
2.7 Pipelining.. 4
2.8 Refining an existing alignment ... 4
2.9 Using a pre-computed guide tree .. 4
2.10 Profile-profile alignment .. 5
2.11 Sequence clustering .. 5

3 File Formats... 5
3.1 Input files .. 5

3.1.1 Amino acid sequences ... 6
3.1.2 Nucleotide sequences... 6
3.1.3 Determining sequence type.. 6

3.2 Output files ... 6
3.2.1 Sequence grouping... 6

3.3 CLUSTALW format ... 6
3.4 MSF format... 6
3.5 HTML format ... 7

4 Using MUSCLE .. 7
4.1 How the algorithm works ... 7
4.2 Command-line options.. 8
4.3 The maxiters option .. 8
4.4 The maxtrees option ... 8
4.5 The maxhours option .. 9
4.6 The maxmb option.. 9
4.7 The profile scoring function ... 9
4.8 Diagonal optimization .. 9
4.9 Anchor optimization ... 9
4.10 Log file ... 10
4.11 Progress messages .. 10
4.12 Running out of memory.. 10
4.13 Troubleshooting.. 11
4.14 Technical support.. 11

5 Command Line Reference ... 11

3

1 Introduction
MUSCLE is a program for creating multiple alignments of amino acid or nucleotide sequences. A range of
options is provided that give you the choice of optimizing accuracy, speed, or some compromise between
the two. Default parameters are those that give the best average accuracy in our tests. Using versions
current at the time of writing, my tests show that MUSCLE can achieve both better average accuracy and
better speed than CLUSTALW or T-Coffee, depending on the chosen options. Many command line options
are provided to vary the internals of the algorithm; some of these will primarily be of interest to algorithm
developers who wish to better understand which features of the algorithm are important in different
circumstances.

2 Quick Start
The MUSCLE algorithm is delivered as a command-line program called muscle. If you are running under
Linux or Unix you will be working at a shell prompt. If you are running under Windows, you should be in a
command window (nostalgically known to us older people as a DOS prompt). If you don't know how to use
command-line programs, you should get help from a local guru.

2.1 Installation
Copy the muscle binary file to a directory that is accessible from your computer. That's it—there are no
configuration files, libraries, environment variables or other settings to worry about. If you are using
Windows, then the binary file is named muscle.exe. From now on muscle should be understood to mean
"muscle if you are using Linux or Unix, muscle.exe if you are using Windows".

2.2 Making an alignment
Make a FASTA file containing some sequences. (If you are not familiar with FASTA format, it is described
in detail later in this Guide.) For now, just to make things fast, limit the number of sequence in the file to no
more than 50 and the sequence length to be no more than 500. Call the input file seqs.fa. (An example file
named seqs.fa is distributed with the standard MUSCLE package). Make sure the directory containing the
muscle binary is in your path. (If it isn't, you can run it by typing the full path name, and the following
example command lines must be changed accordingly). Now type:

muscle -in seqs.fa -out seqs.afa

You should see some progress messages. If muscle completes successfully, it will create a file seqs.afa
containing the alignment. By default, output is created in "aligned FASTA" format (hence the .afa
extension). This is just like regular FASTA except that gaps are added in order to align the sequences. This
is a nice format for computers but not very readable for people, so to look at the alignment you will want an
alignment viewer such as Belvu, or a script that converts FASTA to a more readable format. You can also
use the –msf command-line option to request output in MSF format, which is easier to understand for
people. If muscle gives an error message and you don't know how to fix it, please read the Troubleshooting
section.

The default settings are designed to give the best accuracy, so this may be all you need to know.

2.3 Large alignments
If you have a large number of sequences (a few thousand), or they are very long, then the default settings of
may be too slow for practical use. A good compromise between speed and accuracy is to run just the first
two iterations of the algorithm. On average, this gives accuracy equal to T-Coffee and speeds much faster
than CLUSTALW. This is done by the option –maxiters 2, as in the following example.

muscle -in seqs.fa -out seqs.afa -maxiters 2

4

2.4 Faster speed
The –diags option enables an optimization for speed by finding common words (6-mers in a compressed
amino acid alphabet) between the two sequences as seeds for diagonals. This is related to optimizations in
programs such as BLAST and FASTA: you get faster speed, but sometimes lower average accuracy. For
large numbers of closely related sequences, this option works very well.

If you want the fastest possible speed, then the following example shows the applicable options for proteins.

muscle -in seqs.fa -out seqs.afa -maxiters 1 -diags -sv -distance1 kbit20_3

For nucleotides, use:

muscle -in seqs.fa -out seqs.afa -maxiters 1 -diags

At the time of writing, muscle with these options is faster than any other multiple sequence alignment
program that I have tested. The alignments are not bad, especially when the sequences are closely related.
However, as you might expect, this blazing speed comes at the cost of the lowest average accuracy of the
options that muscle provides.

2.5 Huge alignments
If you have a very large number of sequences (several thousand), or they are very long, then the kbit20_3
option may cause problems because it needs a relatively large amount of memory. Better is to use the
default distance measure, which is roughly 2× or 3× slower but needs less memory, like this:

muscle -in seqs.fa -out seqs.afa -maxiters 1 -diags1 -sv

2.6 Accuracy: caveat emptor
Why do I keep using the clumsy phrase "average accuracy" instead of just saying "accuracy"? That's
because the quality of alignments produced by MUSCLE varies, as do those produced other programs such
as CLUSTALW and T-Coffee. The state of the art leaves plenty of room for improvement. Sometimes the
fastest speed options to muscle give alignments that are better than T-Coffee, though the reverse will more
often be the case. With challenging sets of sequences, it is a good idea to make several different alignments
using different muscle options and to try other programs too. Regions where different alignments agree are
more believable than regions where they disagree.

2.7 Pipelining
Input can be taken from standard input, and output can be written to standard output. This is the default, so
our first example would also work like this:

muscle < seqs.fa > seqs.afa

2.8 Refining an existing alignment
You can ask muscle to try to improve an existing alignment by using the –refine option. The input file must
then be a FASTA file containing an alignment. All sequences must be of equal length, gaps can be
specified using dots "." or dashes "–". For example:

muscle -in seqs.afa -out refined.afa -refine

2.9 Using a pre-computed guide tree
The –usetree option allows you to provide your own guide tree. For example,

muscle -in seqs.fa -out seqs.afa -usetree mytree.phy

5

The tree must by in Newick format, as used by the Phylip package (hence the .phy extension). The Newick
format is described here:

 http://evolution.genetics.washington.edu/phylip/newicktree.html

WARNING. Do not use this option just because you believe that you have an accurate evolutionary tree
for your sequences. The best guide tree for multiple alignment is not in general the correct evolutionary tree.
This can be understood by the following argument. Alignment accuracy decreases with lower sequence
identity. It follows that given a set of profiles, the two that can be aligned most accurately will tend to be
the pair with the highest identity, i.e. at the shortest evolutionary distance. This is exactly the pair selected
by the nearest-neighbor criterion which MUSCLE uses by default. When mutation rates are variable, the
evolutionary neighbor may not be the nearest neighbor. This explains why a nearest-neighbor tree may be
superior to the true evolutionary tree for guiding a progressive alignment.

You will get a warning if you use the –usetree option. To disable the warning, use –usetree_nowarn instead,
e.g.:

muscle -in seqs.fa -out seqs.afa -usetree_nowarn mytree.phy

2.10 Profile-profile alignment
A fundamental step in the MUSCLE algorithm is aligning two multiple sequence alignments. This
operation is sometimes called "profile-profile alignment". If you have two existing alignments of related
sequences you can use the –profile option of MUSCLE to align those two sequences. Typical usage is:

muscle -profile -in1 one.afa -in2 two.afa -out both.afa

The alignments in one.afa and two.afa, which must be in aligned FASTA format, are aligned to each other,
keeping input columns intact and inserting columns of gaps where needed. Output is stored in both.afa.

MUSCLE does not compute a similarity measure or measure of statistical significance (such as an E-value),
so this option is not useful for discriminating homologs from unrelated sequences. For this task, I
recommend Sadreyev & Grishin's COMPASS program.

2.11 Sequence clustering
The first stage in MUSCLE is a fast clustering algorithm. This may be of use in other applications. Typical
usage is:

muscle -cluster -in seqs.fa -tree1 tree.phy

The sequences will be clustered, and a tree written to tree.phy. Options –weight1, –distance1, –cluster1 and
–root1 can be applied if desired. Note that by default, UPGMA clustering is used. You can use
 –neighborjoining if you prefer, but note that this is substantially slower than UPGMA for large numbers of
sequences, and is also slightly less accurate. See discussion of –usetree above.

3 File Formats
MUSCLE uses FASTA format for both input and output. For output only, it also offers CLUSTALW, MSF
and HTML formats using the –clw, –msf and –html command-line options.

3.1 Input files
Input files must be in FASTA format. These are plain text files (word processing files such as Word
documents are not understood!). Unix, Windows and DOS text files are supported (end-of-line may be NL
or CR NL). There is no explicit limit on the length of a sequence, however if you are running a 32-bit
version of muscle then the maximum will be very roughly 10,000 letters due to maximum addressable size
of tables required in memory. Each sequence starts with an annotation line, which is recognized by having

6

a greater-than symbol ">" as its first character. There is no limit on the length of an annotation line (this is
new as of version 3.5), and there is no requirement that the annotation be unique. The sequence itself
follows on one or more subsequent lines, and is terminated either by the next annotation line or by the end
of the file.

3.1.1 Amino acid sequences
The standard single-letter amino acid alphabet is used. Upper and lower case is allowed, the case is not
significant. The special characters X, B, Z and U are understood. X means "unknown amino acid", B is D
or N, Z is E or Q. U is understood to be the 21st amino acid Selenocysteine. White space (spaces, tabs and
the end-of-line characters CR and NL) is allowed inside sequence data. Dots "." and dashes "–" in
sequences are allowed and are discarded unless the input is expected to be aligned (e.g. for the –refine
option).

3.1.2 Nucleotide sequences
The usual letters A, G, C, T and U stand for nucleotides. The letters T and U are equivalent as far as
MUSCLE is concerned. N is the wildcard meaning "unknown nucleotide". R means A or G, Y means C or
T/U. Other wildcards, such as those used by RFAM, are not understood in this version and will be replaced
by Ns. If you would like support for other DNA / RNA alphabets, please let me know.

3.1.3 Determining sequence type
By default, MUSCLE looks at the first 100 letters in the input sequence data (excluding gaps). If 95% or
more of those letters are valid nucleotides (AGCTUN), then the file is treated as nucleotides, otherwise as
amino acids. This method almost always guesses correctly, but you can make sure by specifying the
sequence type on the command line. This is done using the –seqtype option, which can take the following
values:

 –seqtype protein Amino acid
 –seqtype nucleo Nucleotide
 –seqtype auto Automatic detection (default).

3.2 Output files
By default, output is also written in FASTA format. All letters are upper-case and gaps are represented by
dashes "–".

3.2.1 Sequence grouping
By default, MUSCLE re-arranges sequences so that similar sequences are adjacent in the output file. (This
is done by ordering sequences according to a prefix traversal of the guide tree). This makes the alignment
easier to evaluate by eye. If you want to the sequences to be output in the same order as the input file, you
can use the –stable option.

3.3 CLUSTALW format
You can request CLUSTALW output by using the –clw option. This should be compatible with
CLUSTALW, with the exception of the program name in the file header. You can ask MUSCLE to
impersonate CLUSTALW by writing "CLUSTAL W (1.81)" as the program name by using –clwstrict.
Note that MUSCLE allows duplicate sequence labels, while CLUSTALW forbids duplicates. If you use the
–stable option of muscle, then the order of the input sequences is preserved and sequences can be
unambiguously identified even if the labels differ. If you have problems parsing MUSCLE output with
scripts designed for CLUSTALW, please let me know and I'll do my best to provide a fix.

3.4 MSF format
MSF format, as used in the GCG package, is requested by using the –msf option. As with CLUSTALW
format, this is easier for people to read than FASTA. Gaps are represented by a tilde (~). In MUSCLE 3.52,
the MSF format has been tweaked to be more compatible with GCG. The following differences remain.

7

(a) MUSCLE truncates at the first white space or after 63 characters, which ever comes first. The GCG
package apparently truncates after 10 characters. If this is a problem for you, please let me know and I'll
add an option to truncate after 10 in a future version.

(b) MUSCLE allows duplicate sequence labels, while GCG forbids duplicates. If you use the –stable option
of muscle, then the order of the input sequences is preserved and sequences can be unambiguously
identified even if the labels differ.

Thanks to Eric Martel for help with improving GCG compatibility.

3.5 HTML format
I've added an experimental feature starting in version 3.4. To get a Web page as output, use the –html
option. The alignment is colored using a color scheme from Eric Sonnhammer's Belvu editor, which is my
personal favorite. A drawback of this option is that the Web page typically contains a very large number of
HTML tags, which can be slow to display in the Internet Explorer browser. The Netscape browser works
much better. If you have any ideas about good ways to make Web pages, please let me know.

4 Using MUSCLE
In this section we give more details of the MUSCLE algorithm and the more important options offered by
the muscle implementation.

4.1 How the algorithm works
I won't give a complete description of the MUSCLE algorithm here—for that, you will have to read the
papers. (See citations on title page above). But hopefully a summary will help explain what some of the
command-line options do and how they might be useful in your work.

The first step is to calculate a tree. In CLUSTALW, this is done as follows. Each pair of input sequences is
aligned, and used to compute the pair-wise identity of the pair. Identities are converted to a measure of
distance. Finally, the distance matrix is converted to a tree using a clustering method (CLUSTALW uses
neighbor-joining). If you have 1,000 sequences, there are (1,000 × 999)/2 = 499,500 pairs, so aligning
every pair can take a while. MUSCLE uses a much faster, but somewhat more approximate, method to
compute distances: it counts the number of short sub-sequences (known as k-mers, k-tuples or words) that
two sequences have in common, without constructing an alignment. This is typically around 3,000 times
faster that CLUSTALW's method, but the trees will generally be less accurate. We call this step "k-mer
clustering".

The second step is to use the tree to construct what is known as a progressive alignment. At each node of
the binary tree, a pair-wise alignment is constructed, progressing from the leaves towards the root. The first
alignment will be made from two sequences. Later alignments will be one of the three following types:
sequence-sequence, profile-sequence or profile-profile, where "profile" means the multiple alignment of the
sequences under a given internal node of the tree. This is very similar to what CLUSTALW does once it
has built a tree.

Now we have a multiple alignment, which has been built very quickly compared with conventional
methods, mainly because of the distance calculation using k-mers rather than alignments. The quality of
this alignment is typically pretty good—it will often tie or beat a T-Coffee alignment on our tests. However,
on average, we find that it can be improved by proceeding through the following steps.

From the multiple alignment, we can now compute the pair-wise identities of each pair of sequences. This
gives us a new distance matrix, from which we estimate a new tree. We compare the old and new trees, and
re-align subgroups where needed to produce a progressive multiple alignment from the new tree. If the two
trees are identical, there is nothing to do; if there are no subtrees that agree (very unusual), then the whole
progressive alignment procedure must be repeated from scratch. Typically we find that the tree is pretty

8

stable near the leaves, but some re-alignments are needed closer the root. This procedure (compute pair-
wise identities, estimate new tree, compare trees, re-align) is iterated until the tree stabilizes or until a
specified maximum number of iterations has been done. We call this process "tree refinement", although it
also tends to improve the alignment.

We now keep the tree fixed and move to a new procedure which is designed to improve the multiple
alignment. The set of sequences is divided into two subsets (i.e., we make a bipartition on the set of
sequences). A profile is constructed for each of the two subsets based on the current multiple alignment.
These two profiles are then re-aligned to each other using the same pair-wise alignment algorithm as used
in the progressive stage. If this improves an "objective score" that measures the quality of the alignment,
then the new multiple alignment is kept, otherwise it is discarded. By default, the objective score is the
classic sum-of-pairs score that takes the (sequence weighted) average of the pair-wise alignment score of
every pair of sequences in the alignment. Bipartitions are chosen by deleting an edge in the guide tree, each
of the two resulting subtrees defines a subset of sequences. This procedure is called "tree dependent
refinement". One iteration of tree dependent refinement tries bipartitions produced by deleting every edge
of the tree in depth order moving from the leaves towards the center of the tree. Iterations continue until
convergence or up to a specified maximum.

For convenience, the major steps in MUSCLE are described as "iterations", though the first three iterations
all do quite different things and may take very different lengths of time to complete. The tree-dependent
refinement iterations 3, 4 ... are true iterations and will take similar lengths of time.

Iteration Actions
1 Distance matrix by k-mer clustering, estimate tree, progressive alignment

according to this tree.

2 Distance matrix by pair-wise identities from current multiple alignment, estimate
tree, progressive alignment according to new tree, repeat until convergence or
specified maximum number of times.

3, 4 ... Tree-dependent refinement. One iteration visits every edge in the tree one time.

4.2 Command-line options
There are two types of command-line options: value options and flag options. Value options are followed
by the value of the given parameter, for example –in <filename>; flag options just stand for themselves,
such as –msf. All options are a dash (not two dashes!) followed by a long name; there are no single-letter
equivalents. Value options must be separated from their values by white space in the command line. Thus,
muscle does not follow Unix, Linux or Posix standards, for which we apologize. The order in which
options are given is irrelevant unless two options contradict, in which case the right-most option silently
wins.

4.3 The maxiters option
You can control the number of iterations that MUSCLE does by specifying the –maxiters option. If you
specify 1, 2 or 3, then this is exactly the number of iterations that will be performed. If the value is greater
than 3, then muscle will continue up to the maximum you specify or until convergence is reached, which
ever happens sooner. The default is 16. If you have a large number of sequences, refinement may be rather
slow.

4.4 The maxtrees option
This option controls the maximum number of new trees to create in iteration 2. Our experience suggests
that a point of diminishing returns is typically reached after the first tree, so the default value is 1. If a
larger value is given, the process will repeat until convergence or until this number of trees has been
created, which ever comes first.

9

4.5 The maxhours option
If you have a large alignment, muscle may take a long time to complete. It is sometimes convenient to say
"I want the best alignment I can get in 24 hours" rather than specifying a set of options that will take an
unknown length of time. This is done by using –maxhours, which specifies a floating-point number of
hours. If this time is exceeded, muscle will write out current alignment and stop. For example,

muscle -in huge.fa -out huge.afa -maxiters 9999 -maxhours 24.0

Note that the actual time may exceed the specified limit by a few minutes while muscle finishes up on a
step. It is also possible for no alignment to be produced if the time limit is too small.

4.6 The maxmb option
If the amount of memory needed by MUSCLE exceeds available physical RAM, then the operating system
will probably begin paging (i.e., swapping memory to and from hard disk), causing MUSCLE to run very
slowly. This is especially problematic when MUSCLE is used for batch processing, where one or two very
large alignments can cause a batch to effectively hang. Starting in version 3.52, MUSCLE attempts to limit
the amount of memory used. If the limit is exceeded, MUSCLE quits, saving the best alignment so far
produced (if any). MUSCLE attempts to determine the amount of physical RAM by making an appropriate
operating system call. Under Linux and Windows, this works well. On other systems, particularly other
flavors of Unix, MUSCLE doesn't know how to query the system and assumes that there is 500 Mb of
RAM. To override this default, you can specify the maximum number of megabytes to allocate by using the
–maxmb option, for example to set a limit of 1.5 Gb:

muscle -in huge.fa -out huge.afa -maxhours 1.0 -maxmb 1500

This feature has been hacked on top of code that wasn't really designed for it. So it doesn't always work
perfectly, but is better than nothing. The ideal solution would be to implement linear space dynamic
programming code (e.g., the Myers-Miller algorithm) for situations where memory is tight. One day I
might do this if there is sufficient interest. If you are interested in contributing the code, e.g. for a class
project, please let me know, I'll be glad to provide support.

4.7 The profile scoring function
Three different protein profile scoring functions are supported, the log-expectation score (–le option) and a
sum of pairs score using either the PAM200 matrix (–sp) or the VTML240 matrix (–sv). The log-
expectation score is the default as it gives better results on our tests, but is typically somewhere between
two or three times slower than the sum-of-pairs score. For nucleotides, –spn is currently the only option
(which is of course the default for nucleotide data, so you don't need to specify this option).

4.8 Diagonal optimization
Creating a pair-wise alignment by dynamic programming requires computing an L1 × L2 matrix, where L1
and L2 are the sequence lengths. A trick used in algorithms such as BLAST is to reduce the size of this
matrix by using fast methods to find "diagonals", i.e. short regions of high similarity between the two
sequences. This speeds up the algorithm at the expense of some reduction in accuracy. MUSCLE uses a
technique called k-mer extension to find diagonals. It is disabled by default because of the slight reduction
in average accuracy and can be turned on by specifying the –diags option. To enable diagonal optimization
in the first iteration, use –diags1, to enable diagonal optimization in the second iteration, use –diags2.
These are provided separately because it would be a reasonable strategy to enable diagonals in the first
iteration but not the second (because the main goal of the first iteration is to construct a multiple alignment
quickly in order to improve the distance matrix, which is not very sensitive to alignment quality; whereas
the goal of the second iteration is to make the best possible progressive alignment).

4.9 Anchor optimization
Tree-dependent refinement (iterations 3, 4 ...) can be speeded up by dividing the alignment vertically into
blocks. Block boundaries are found by identifying high-scoring columns (e.g., a perfectly conserved

10

column of Cs or Ws would be a candidate). Each vertical block is then refined independently before
reassembling the complete alignment, which is faster because of the L2 factor in dynamic programming
(e.g., suppose the alignment is split into two vertical blocks, then 2 × 0.52 = 0.5, so the dynamic
programming time is roughly halved). The –noanchors option is used to disable this feature. This option
has no effect if –maxiters 1 or –maxiters 2 is specified. On benchmark tests, enabling anchors has little or
no effect on accuracy, but if you want to be very conservative and are striving for the best possible
accuracy then –noanchors is a reasonable choice.

4.10 Log file
You can specify a log file by using –log <filename> or –loga <filename>. Using –log causes any existing
file to be deleted, –loga appends to any existing file. A message will be written to the log file when muscle
starts and stops. Error and warning messages will also be written to the log. If –verbose is specified, then
more information will be written, including the command line used to invoke muscle, the resulting internal
parameter settings, and also progress messages. The content and format of verbose log file output is subject
to change in future versions.

The use of a log file may seem contrary to Unix conventions for using standard output and standard error. I
like these conventions, but never found a fully satisfactory way to use them. I like progress messages (see
below), but they mess up a file if you re-direct standard error and there are errors or warning messages too.
I could try to detect whether a standard file handle is a tty device or a disk file and change behavior
accordingly, but I regard this as too complicated and too hard for the user to understand. On Windows it
can be hard to re-direct standard file handles, especially when working in a GUI debugger. Maybe one day
I will figure out a better solution (suggestions welcomed).

I highly recommend using –verbose and –log[a], especially when running muscle in a batch mode. This
enables you to verify whether a particular alignment was completed and to review any errors or warnings
that occurred.

4.11 Progress messages
By default, muscle writes progress messages to standard error periodically so that you know it's doing
something and get some feedback about the time and memory requirements for the alignment. Here is a
typical progress message.

00:00:23 25 Mb (5%) Iter 2 87.20% Build guide tree

The fields are as follows.

00:00:23 Elapsed time since muscle started.
25 Mb (5%) Peak memory use in megabytes (i.e., not the current usage, but the

maximum amount of memory used since muscle started). The number in
parentheses is the fraction of physical memory (see –maxmb option for
more discussion).

Iter 2 Iteration currently in progress.
87.20% How much of the current step has been completed (percentage).
Build... A brief description of the current step.

The –quiet command-line option disables writing progress messages to standard error. If the –verbose
command-line option is specified, a progress message will be written to the log file when each iteration
completes. So –quiet and –verbose are not contradictory.

4.12 Running out of memory
The muscle code tries to deal gracefully with low-memory conditions by using the following technique. A
block of "emergency reserve" memory is allocated when muscle starts. If a later request to allocate memory
fails, this reserve block is made available, and muscle attempts to save the current alignment. With luck, the

11

reserved memory will be enough to allow muscle to save the alignment and exit gracefully with an
informative error message. See also the –maxmb option.

4.13 Troubleshooting
Here is some general advice on what to do if muscle fails and you don't understand what happened. The
code is designed to fail gracefully with an informative error message when something goes wrong, but
there will no doubt be situations I haven't anticipated (not to mention bugs).

Check the MUSCLE web site for updates, bug reports and other relevant information.

 http://www.drive5.com/muscle

Check the input file to make sure it is in valid FASTA format. Try giving it to another sequence analysis
program that can accept large FASTA files (e.g., the NCBI formatdb utility) to see if you get an
informative error message. Try dividing the file into two halves and using each half individually as input. If
one half fails and the other does not, repeat until the problem is localized as far as possible.

Use –log or –loga and –verbose and check the log file to see if there are any messages that give you a hint
about the problem. Look at the peak memory requirements (reported in progress messages) to see if you
may be exceeding the physical or virtual memory capacity of your computer.

If muscle crashes without giving an error message, or hangs, then you may need to refer to the source code
or use a debugger. A "debug" version, muscled, may be provided. This is built from the same source code
but with the DEBUG macro defined and without compiler optimizations. This version runs much more
slowly (perhaps by a factor of three or more), but does a lot more internal checking and may be able to
catch something that is going wrong in the code. The –core option specifies that muscle should not catch
exceptions. When –core is specified, an exception may result in a debugger trap or a core dump, depending
on the execution environment. The –nocore option has the opposite effect. In muscle, –nocore is the default,
–core is the default in muscled.

4.14 Technical support
I am happy to provide support. But I am busy, and am offering this program at no charge, so I ask you to
make a reasonable effort to figure things out for yourself before contacting me.

5 Command Line Reference

Value option Legal values Default Description
anchorspacing Integer 32 Minimum spacing between anchor columns.

center Floating point [1] Center parameter. Should be negative.

cluster1
cluster2

upgma
upgmb
neighborjoining

upgmb Clustering method. cluster1 is used in iteration
1 and 2, cluster2 in later iterations.

diagbreak Integer 1 Maximum distance between two diagonals
that allows them to merge into one diagonal.

diaglength Integer 24 Minimum length of diagonal.

diagmargin Integer 5 Discard this many positions at ends of
diagonal.

distance1

kmer6_6
kmer20_3
kmer20_4

Kmer6_6
(amino) or
Kmer4_6

Distance measure for iteration 1.

12

Value option Legal values Default Description
kbit20_3
kmer4_6

(nucleo)

distance2

kmer6_6
kmer20_3
kmer20_4
kbit20_3
pctid_kimura
pctid_log

pctid_kimura Distance measure for iterations 2, 3 ...

gapopen Floating point [1] The gap open score. Must be negative.

hydro Integer 5 Window size for determining whether a
region is hydrophobic.

hydrofactor Floating point 1.2 Multiplier for gap open/close penalties in
hydrophobic regions.

in Any file name standard input Where to find the input sequences.

in1 Any file name None Where to find an input alignment.

in2 Any file name None Where to find an input alignment.

log File name None. Log file name (delete existing file).

loga File name None. Log file name (append to existing file).

maxhours Floating point None. Maximum time to run in hours. The actual
time may exceed the requested limit by a few
minutes. Decimals are allowed, so 1.5 means
one hour and 30 minutes.

maxiters Integer 1, 2 ... 16 Maximum number of iterations.

maxmb Integer 80% of
Physical RAM,
or 500 Mb if
not known.

Maximum memory to allocate in Mb.

maxtrees Integer 1 Maximum number of new trees to build in
iteration 2.

minbestcolscore Floating point [1] Minimum score a column must have to be an
anchor.

minsmoothscore Floating point [1] Minimum smoothed score a column must
have to be an anchor.

objscore sp
ps
dp
xp
spf
spm

spm Objective score used by tree dependent
refinement.
sp=sum-of-pairs score.
spf=sum-of-pairs score (dimer approximation)
spm=sp for < 100 seqs, otherwise spf
dp=dynamic programming score.
ps=average profile-sequence score.
xp=cross profile score.

13

Value option Legal values Default Description
out File name standard output Where to write the alignment.

root1
root2

pseudo
midlongestspan
minavgleafdist

psuedo Method used to root tree; root1 is used in
iteration 1 and 2, root2 in later iterations.

seqtype protein
nucleo
auto

auto Sequence type.

smoothscoreceil Floating point [1] Maximum value of column score for
smoothing purposes.

smoothwindow Integer 7 Window used for anchor column smoothing.

spscore File name Compute SP objective score of multiple
alignment.

SUEFF Floating point
value between 0
and 1.

0.1 Constant used in UPGMB clustering.
Determines the relative fraction of average
linkage (SUEFF) vs. nearest-neighbor linkage
(1 – SUEFF).

tree1
tree2

File name None Save tree produced in first or second iteration
to given file in Newick (Phylip-compatible)
format.

usetree File name None Use given tree as guide tree. Must by in
Newick (Phyip-compatible) format.

weight1
weight2

none
henikoff
henikoffpb
gsc
clustalw
threeway

clustalw

Sequence weighting scheme.
weight1 is used in iterations 1 and 2.
weight2 is used for tree-dependent refinement.
none=all sequences have equal weight.
henikoff=Henikoff & Henikoff weighting
scheme.
henikoffpb=Modified Henikoff scheme as
used in PSI-BLAST.
clustalw=CLUSTALW method.
threeway=Gotoh three-way method.

14

Flag option Set by default? Description
anchors yes Use anchor optimization in tree dependent refinement

iterations.

brenner no Use Steven Brenner's method for computing the root
alignment.

cluster no Perform fast clustering of input sequences. Use the –tree1
option to save the tree.

dimer no Use dimer approximation for the SP score (faster, slightly less
accurate).

clw no Write output in CLUSTALW format (default is FASTA).

clwstrict no Write output in CLUSTALW format with the "CLUSTAL W
(1.81)" header rather than the MUSCLE version. This is
useful when a post-processing step is picky about the file
header.

core yes in muscle,
no in muscled.

Do not catch exceptions.

diags no Use diagonal optimizations. Faster, especially for closely
related sequences, but may be less accurate.

diags1 no Use diagonal optimizations in first iteration.

diags2 no Use diagonal optimizations in second iteration.

fasta yes Write output in FASTA format. Alternatives include –clw,
–clwstrict, –msf and –html.

group yes Group similar sequences together in the output. This is the
default. See also –stable.

html no Write output in HTML format (default is FASTA).

le maybe Use log-expectation profile score (VTML240). Alternatives
are to use –sp or –sv. This is the default for amino acid
sequences.

msf no Write output in MSF format (default is FASTA). Designed to
be compatible with the GCG package.

noanchors no Disable anchor optimization. Default is –anchors.

nocore no in muscle,
yes in muscled.

Catch exceptions and give an error message if possible.

profile no Compute profile-profile alignment. Input alignments must be
given using –in1 and –in2 options.

quiet no Do not display progress messages.

refine no Input file is already aligned, skip first two iterations and begin

15

Flag option Set by default? Description
tree dependent refinement.

sp no Use sum-of-pairs protein profile score (PAM200). Default is
–le.

spscore no Compute alignment score of profile-profile alignment. Input
alignments must be given using –in1 and –in2 options. These
must be pre-aligned with gapped columns as needed, i.e. must
be of the same length (have same number of columns).

spn maybe

Use sum-of-pairs nucleotide profile score. This is the only
option for nucleotides, and is therefore the default. The
substitution scores and gap penalty scores are "borrowed"
from BLASTZ.

stable no Preserve input order of sequences in output file. Default is to
group sequences by similarity (–group).

sv no Use sum-of-pairs profile score (VTML240). Default is –le.

termgaps4 yes Use 4-way test for treatment of terminal gaps. (Cannot be
disabled in this version).

termgapsfull no Terminal gaps penalized with full penalty.
[1] Not fully supported in this version.

termgapshalf yes Terminal gaps penalized with half penalty.
[1] Not fully supported in this version.

termgapshalflonger no Terminal gaps penalized with half penalty if gap relative to
longer sequence, otherwise with full penalty.
[1] Not fully supported in this version.

verbose no Write parameter settings and progress messages to log file.

version no Write version string to stdout and exit.

Notes
[1] Default depends on the profile scoring function. To determine the default, use –verbose –log and check
the log file.

